89 research outputs found

    The DNA Binding Properties of the Parsley bZIP Transcription Factor CPRF4a Are Regulated by Light

    Get PDF
    The common plant regulatory factors (CPRFs) from parsley are transcription factors with a basic leucine zipper motif that bind to cis-regulatory elements frequently found in promoters of light-regulated genes. Recent studies have revealed that certain CPRF proteins are regulated in response to light by changes in their expression level and in their intracellular localization. Here, we describe an additional mechanism contributing to the light-dependent regulation of CPRF proteins. We show that the DNA binding activity of the factor CPRF4a is modulated in a phosphorylation-dependent manner and that cytosolic components are involved in the regulation of this process. Moreover, we have identified a cytosolic kinase responsible for CPRF4a phosphorylation. Modification of recombinant CPRF4a by this kinase, however, is insufficient to cause a full activation of the factor, suggesting that additional modifications are required. Furthermore, we demonstrate that the DNA binding activity of the factor is modified upon light treatment. The results of additional irradiation experiments suggest that this photoresponse is controlled by different photoreceptor systems. We discuss the possible role of CPRF4a in light signal transduction as well as the emerging regulatory network controlling CPRF activities in parsley

    Redundancy and specialization among plant microRNAs : role of the MIR164 family in developmental robustness

    Get PDF
    In plants, members of microRNA (miRNA) families are often predicted to target the same or overlapping sets of genes. It has thus been hypothesized that these miRNAs may act in a functionally redundant manner. This hypothesis is tested here by studying the effects of elimination of all three members of the MIR164 family from Arabidopsis. It was found that a loss of miR164 activity leads to a severe disruption of shoot development, in contrast to the effect of mutation in any single MIR164 gene. This indicates that these miRNAs are indeed functionally redundant. Differences in the expression patterns of the individual MIR164 genes imply, however, that redundancy among them is not complete, and that these miRNAs show functional specialization. Furthermore, the results of molecular and genetic analyses of miR164-mediated target regulation indicate that miR164 miRNAs function to control the transcript levels, as well as the expression patterns, of their targets, suggesting that they might contribute to developmental robustness. For two of the miR164 targets, namely CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, we provide evidence for their involvement in the regulation of growth and show that their derepression in miR164 loss-of-function mutants is likely to account for most of the mutant phenotype

    Genome-Wide Analysis of Gene Expression during Early Arabidopsis Flower Development

    Get PDF
    Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner

    Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA

    Get PDF
    In Arabidopsis, the population of stem cells present in young flower buds is lost after the production of a fixed number of floral organs. The precisely timed repression of the stem cell identity gene WUSCHEL (WUS) by the floral homeotic protein AGAMOUS (AG) is a key part of this process. In this study, we report on the identification of a novel input into the process of floral stem cell regulation. We use genetics and chromatin immunoprecipitation assays to demonstrate that the bZIP transcription factor PERIANTHIA (PAN) plays a role in regulating stem cell fate by directly controlling AG expression and suggest that this activity is spatially restricted to the centermost region of the AG expression domain. These results suggest that the termination of floral stem cell fate is a multiply redundant process involving loci with unrelated floral patterning functions

    The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis

    Get PDF
    Background: MicroRNAs (miRNAs) are small 20–25 nucleotide non-protein-coding RNAs that negatively regulate expression of genes in many organisms, ranging from plants to humans. The MIR164 family of miRNAs in Arabidopsis consists of three members that share sequence complementarity to transcripts of NAC family transcription factors, including CUP-SHAPED COTYLEDON1 (CUC1) and CUC2. CUC1 and CUC2 are redundantly required for the formation of boundaries between organ primordia. The analysis of transgenic plants that either overexpress miR164a or miR164b or express a miRNA-resistant version of CUC1 or CUC2 has shown that miRNA regulation of CUC1 and CUC2 is necessary for normal flower development. A loss-of-function allele of MIR164b did not result in a mutant phenotype, possibly because of functional redundancy among the three members of the MIR164 family. Results: In this study, we describe the characterization of the early extra petals1 (eep1) Arabidopsis mutant, whose predominant phenotype is the formation of extra petals in early-arising flowers. We demonstrate that eep1 is a loss-of-function allele of MIR164c, one of three known members of the MIR164 family. Our analyses of miR164c function and eep1 mir164b double mutants reveal that miR164c controls petal number in a nonredundant manner by regulating the transcript accumulation of the transcription factors CUC1 and CUC2. Conclusions: The data presented in this study indicate that closely related miRNA family members that are predicted to target the same set of genes can have different functions during development, possibly because of nonoverlapping expression patterns

    The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS

    Get PDF
    The Arabidopsis homeotic gene AGAMOUS (AG) is necessary for the specification of reproductive organs (stamens and carpels) during the early steps of flower development. AG encodes a transcription factor of the MADS-box family that is expressed in stamen and carpel primordia. At later stages of development, AG is expressed in distinct regions of the reproductive organs. This suggests that AG might function during the maturation of stamens and carpels, as well as in their early development. However, the developmental processes that AG might control during organogenesis and the genes that are regulated by this factor are largely unknown. Here we show that microsporogenesis, the process leading to pollen formation, is induced by AG through activation of the SPOROCYTELESS gene (SPL, also known as NOZZLE,NZZ), a regulator of sporogenesis. Furthermore, we demonstrate that SPL can induce microsporogenesis in the absence of AG function, suggesting that AG controls a specific process during organogenesis by activating another regulator that performs a subset of its functions

    Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations

    Get PDF
    Understanding how flowers develop from undifferentiated stem cells has occupied developmental biologists for decades. Key to unraveling this process is a detailed knowledge of the global regulatory hierarchies that control developmental transitions, cell differentiation and organ growth. These hierarchies may be deduced from gene perturbation experiments, which determine the effects on gene expression after specific disruption of a regulatory gene. Here, we tested experimental strategies for gene perturbation experiments during Arabidopsis thaliana flower development. We used artificial miRNAs (amiRNAs) to disrupt the functions of key floral regulators, and expressed them under the control of various inducible promoter systems that are widely used in the plant research community. To be able to perform genome‐wide experiments with stage‐specific resolution using the various inducible promoter systems for gene perturbation experiments, we also generated a series of floral induction systems that allow collection of hundreds of synchronized floral buds from a single plant. Based on our results, we propose strategies for performing dynamic gene perturbation experiments in flowers, and outline how they may be combined with versions of the floral induction system to dissect the gene regulatory network underlying flower development

    Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA

    Get PDF
    How different organs are formed from small sets of undifferentiated precursor cells is a key question in developmental biology. To understand the molecular mechanisms underlying organ specification in plants, we studied the function of the homeotic selector genes APETALA3 (AP3) and PISTILLATA (PI), which control the formation of petals and stamens during Arabidopsis flower development. To this end, we characterized the activities of the transcription factors that AP3 and PI encode throughout flower development by using perturbation assays as well as transcript profiling and genomewide localization studies, in combination with a floral induction system that allows a stage-specific analysis of flower development by genomic technologies. We discovered considerable spatial and temporal differences in the requirement for AP3/PI activity during flower formation and show that they control different sets of genes at distinct phases of flower development. The genomewide identification of target genes revealed that AP3/PI act as bifunctional transcription factors: they activate genes involved in the control of numerous developmental processes required for organogenesis and repress key regulators of carpel formation. Our results imply considerable changes in the composition and topology of the gene network controlled by AP3/PI during the course of flower development. We discuss our results in light of a model for the mechanism underlying sex-determination in seed plants, in which AP3/PI orthologues might act as a switch between the activation of male and the repression of female development

    Orchestration of Floral Initiation by APETALA1

    Get PDF
    The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. Although AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, at more advanced stages it also activates regulatory genes required for floral organ formation, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning, and hormonal pathways
    corecore